Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity

Author:

Watermann Tobias1,Sebastiani Daniel2

Affiliation:

1. Institute of Chemistry , Martin-Luther University Halle-Wittenberg , 06120 Halle , Germany

2. Institute of Chemistry , Martin-Luther University Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle , Germany

Abstract

Abstract We investigate liquid water confined within nanoscale cellulose slabs by means of molecular dynamics simulations. Depending on the construction of the cellulose–water interface, two different surface structures with distinct levels of hydrophilicity are exposed to the water. The different philicities are reflected in the response of the water phase to this geometric confinement, both in terms of the density profile and in the strength of the aqueous hydrogen bonding network. At the smooth surface cut along the (010) axis of the cellulose crystal, water shows typical properties of a hydrophilic confinement: the density shows fluctuations that disappear further away from the wall, the water molecules orient themselves and the coordination numbers increases at the interface. As a consequence, the water becomes “harder” at the interface, with a considerably increased local ordering. At the zigzag-shaped surface along the (111) axis, the degree of hydrophilicity is reduced, and only small effects can be seen: the density shows weak fluctuations, and the orientation of the water molecules is closer to that of bulk water than to the smooth surface. The local coordination numbers remains constant over the whole confinement. Our work shows that the nature of the exposed cellulose interface has a strong influence on how the structure of adjacent water is modified. The different ways of surface construction yield distinct degrees of hydrophilicity and spatial accessibility regarding the hydrogen bond network, resulting in a notably different interfacial water structure.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3