Numerical Simulation of the Ignition of Fuel/Air Gas Mixtures Around Small Hot Particles

Author:

Häber Thomas1,Zirwes Thorsten2,Roth David3,Zhang Feichi3,Bockhorn Henning3,Maas Ulrich4

Affiliation:

1. Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology , Engesserstr. 18/20 , 76131 Karlsruhe , Germany

2. Steinbuch Centre for Computing (SCC), SimLab Energy and Competence Centre ING, Karlsruhe Institute of Technology , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany

3. >Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe Institute of Technology , Engler-Bunte-Ring 7 , 76131 Karlsruhe , Germany

4. Institute of Technical Thermodynamics, Karlsruhe Institute of Technology , Engelbert-Arnold-Str. 4 , 76131 Karlsruhe , Germany

Abstract

Abstract This study presents the simulation and detailed analysis of the ignition of initially quiescent fuel/air mixtures by small, stationary, laser-heated spherical particles. Our simulations cover a wide parameter space by varying the kind of fuel, stoichiometry, heating rate, radical surface destruction efficiencies as well as particle size. The results agree well with experimentally determined particle surface temperatures at the time of ignition over the whole range of parameters. The surface temperatures required for ignition strongly depends on the kind of fuel and increases in the order hydrogen, acetylene, ethylene, ethane, propane and methane. It also increases with decreasing particle size. By contrast, mixture stoichiometry and heating rate have a minor influence on the ignition temperatures. Comparisons with two-dimensional direct numerical simulations show that fast, but fully coupled one-dimensional simulations are sufficient to capture the details of the ignition event, permitting a systematic investigation for large number of conditions. At small particle radii (r≤2 mm) there exists a simple mapping of only two parameters, an apparent activation energy and a factor comprising thermo-physical properties of the gas phase that is able to estimate the particle surface temperature required for ignition. Such a map might be used for the safety assessment of ignition hazards by small hot particles as function of fuel, stoichiometry and particle size.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference64 articles.

1. M. Hattwig, H. Steen (Hg.): Handbook of Explosion Prevention and Protection. Volume 1, Auflage, neue Ausg. Wiley-VCH, Weinheim (2008).

2. L. Hardt, Temperaturmessung an Schleiffunken, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany (1953).

3. L. Hardt, Temperaturmessung an Schleiffunken. Bundesarbeitsblatt, pp. 430–436. Hg. v. Bundesministerium für Arbeit und Soziales, Germany (1954).

4. R. K. Eckhoff, O. Thomassen, J. Loss Prevent. Proc. 7 (1994) 281.10.1016/0950-4230(94)80041-3

5. S. Hawksworth, R. Rogers, M. Beyer, C. Proust, D. Lakic, J. Gummer, D. Raveau, Assessing the Potential for Ignition from Mechanical Equipment. In: IChemE Symposium Series. Hazards XIX. Safety and Loss Prevention, 28–30 March 2006, Paper No. 67 (2006).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3