Preparation and Chemical Modification of Rice Husk Char for the Removal of a Toxic Dye (Orange G) from Aqueous Medium

Author:

Malik Abdul1,Khan Abbas1,Humayun Muhammad2

Affiliation:

1. Department of Chemistry , Abdul Wali Khan University , Mardan 23200 , Pakistan

2. Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , P.R. China

Abstract

Abstract The rice husk char (RHC) was prepared by keeping a known amount of the rice husk in furnace at 400°C. The product was modified with KOH and labeled as KOH modified rice husk char (KMRHC) which was used as an adsorbent for the removal of toxic dye, Orange G (OG) from aqueous media. Variation in the experimental conditions (agitation time, dye concentration, adsorbent dose, pH and temperature) play significant role in the adsorption process. The maximum adsorption capacity of OG on KMRHC was investigated as 38.8 mg/g at pH=4 using initial dye concentrations of 80 mg/L containing 2 g/L of the adsorbent dose with agitation speed of 250 rpm at 303 K. The % adsorption of dye was inspected as 96%. Thermodynamics studies of the adsorption of OG on KMRHC indicated that the value of ΔG and ΔH were negative which revealed that the adsorption process is exothermic and spontaneous process. The negative value of ΔS suggested that randomness decreases at the interface of adsorbent–adsorbate during the adsorption process. The kinetics study indicated that the experimental data of the adsorption process best fits to pseudo-second order kinetic model. The equilibrium data was tested on Langmuir, Freundlich and Temkin adsorption isotherm models. It was inspected that data follows all the three isotherm models (R2>0.91). However, the values of correlation coefficients (R2) indicated that the data is best fit to the Langmuir isotherm model (R2>0.99) which suggest for chemi-sorption process. The effect of temperature (303–343 K) shows that by varying the temperature the adsorption process is significantly affected. The general trend indicates that adsorption efficiency is higher at lower temperature as compared to higher temperature. This trend also suggests that the adsorption coefficient (K), rate of adsorption, and hence the spontaneity of adsorption process also decreases with raising the temperature.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3