Experimental and Theoretical Investigation of the Flashback of a Swirling, Bluff-Body Stabilised, Premixed Flame

Author:

Karimi Nader1,Heeger Christoph2,Christodoulou Loizos1,Dreizler Andreas2

Affiliation:

1. School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom

2. Institute of Reactive Flows and Diagnostics, Technische Universität Darmstadt, Darmstadt, Germany

Abstract

Abstract Flashback of an open turbulent, premixed flame in a swirl burner with central bluff-body is considered. The aim is to obtain further understanding of the physical mechanisms responsible for the upstream flame propagation. Previous studies on the same configuration hypothesised that there is an adverse pressure gradient in the direction of flame propagation. In this paper this is further investigated experimentally and theoretically. Static gauge pressure is measured on the surface of the bluff-body during flame flashback. Simultaneously, flame luminosity is imaged at 5 kHz. The results indicate that the static pressure rises downstream of the propagating reactive front. This is, then, discussed in the context of the theory of vortex bursting. An existing theory of flame propagation in the core flow is extended to a configuration similar to that investigated experimentally. The theory, although highly simplified, explains the generation of adverse pressure gradient across the flame and is qualitatively consistent with the experiment.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3