Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine

Author:

Knop Jim-Marcel1,Winter Roland2

Affiliation:

1. Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology , Technical University Dortmund , Otto-Hahn-Street 4a , 44227 Dortmund , Germany

2. Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology , Technical University Dortmund , Otto-Hahn-Street 4a , 44227 Dortmund , Germany , Tel.: +49 231 7553900

Abstract

Abstract FTIR spectroscopy has been used to reveal the effects of different types of cosolvents (TMAO, urea) as well as macromolecular crowding (using the crowding agent Ficoll) on the temperature and pressure dependent structure of poly-L-lysine, poly-D-lysine and their racemic mixture. Compared to the effects of cosolvents on the unfolding transition of proteins, their effects on the α-helix to aggregated β-sheet transition of polylysine are quite small. High hydrostatic pressure has been found to favor the α-helical state over the aggregated β-sheet structure which is reflected in a volume decrease of ΔV=−32 mL mol−1, indicating that the packing mode is more efficient in the α-helical structure. Both, addition of urea and TMAO lead to a decrease in pressure stability of the aggregated β-sheet structure, which is accompanied by a three-fold decrease in ΔV, whereas the macromolecular crowder has little effect on the β-to-α transition. The more than 3 kbar higher β-to-α transition pressure of the racemic mixture compared with PLL confirms the drastic stabilization of β-sheet aggregates if the stereoisomers PLL and PDL are combined. Changes in hydration and packing of the polypeptide occurs upon interaction and fine packing of the polypeptide’s chains of opposed chirality, which are slightly modulated by the properties of cosolute and crowding, only. The underlying solvational and packing mechanisms observed here may be decisive factors responsible for the spontaneous protein aggregation in general and, as such, may shed additional light on the molecular basis of amyloid-associated diseases.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3