UV/H2O2/Ferrioxalate Based Integrated Approach to Decolorize and Mineralize Reactive Blue Dye: Optimization Through Response Surface Methodology

Author:

Barkaat Samra1,Zuber Muhammad12,Zia Khalid Mahmood1,Noreen Aqdas1,Tabasum Shazia1

Affiliation:

1. Department of Applied Chemistry , Government College University Faisalabad , Faisalabad , Pakistan

2. Department of Chemistry , The University of Lahore , Lahore , Pakistan

Abstract

Abstract The decolorization and mineralization of Reactive Blue 222 dye was studied using UV/H2O2/ferrioxalate approach in combination with Pleorotus ostreatus. The dye was decolorized by UV/H2O2/ferrioxalate based advanced oxidation process (AOP) at different levels of process variables dye concentration, catalyst dose, pH, reaction time and resultantly, 80% decolorization was achieved. Pleorotus ostreatus treatment enhanced the dye degradation up to 92% at optimum levels of pH, temperature, inoculum size, carbon and nitrogen sources at specific concentration. Response Surface Methodology (RSM) was employed for optimization under face-centered central composite design (CCD). Although both treatments were found efficient for the removal of dye, but on applying the integrated approach, 96% dye removal was obtained which led to complete degradation of the dye. FTIR analysis confirmed the degradation of dye into low mass compounds. The water quality assurance parameters were measured to assess the mineralization efficiency. A significant reduction in COD (94%) and TOC (92%) were found when dye was degraded integrated approach. A phytotoxicity analysis on Pisum sativum plant revealed the non-toxic behavior of metabolites produced. Results revealed that the integrated approach is highly promising for the decolorization and mineralization of the Reactive Blue 222 dye and is also extendable to treat the dye in textile wastewater.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3