Carbon materials derived by crystalline porous materials for capacitive energy storage

Author:

Wang Hang1ORCID,Li Yiting1,Wang Longyu1,Jin Jieting1

Affiliation:

1. School of Materials Science and Engineering , 71136 China University of Petroleum (East China) , Qingdao , Shandong 266580 , P.R. China

Abstract

Abstract The controlled synthesis of precise carbon nanostructures with high electron conductivity, high reaction activity, and structural stability plays a significant role in practical applications yet largely unmet. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and coordination polymers (CPs) as crystalline porous materials (CPMs) have shown extraordinary porosity, tremendous structural diversity, and highly ordered pores, offering a platform for precise controlled carbon materials (CMs) with regular porous structures and high performances. Some recent studies have shown that CMs derived from CPMs with high specific surface area, superior chemical stability, excellent electrical conductivity offer a great opportunity for electrochemical energy storage and conversion. In this review, we summarize recent milestones of CPMs derived CMs in the field of capacitive energy storage. We hope the more precise design and control at the atomic level of CPMs could provide us a constructive view of the structure-activity relationship between CMs and electrochemical capacitors, as well as future trends and prospects.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Shandong Province Postdoctoral Innovative Talent Support Program

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3