Investigation and optimisation of a lithium-drift silicon detector using Si–Li structure and bidirectional diffusion and drift techniques

Author:

Zhang Jing1,Japashov Nursultan1

Affiliation:

1. Faculty of Physics and Technology , Al-Farabi Kazakh National University , 71 al-Farabi Ave. , Almaty 050040 , Republic of Kazakhstan

Abstract

Abstract The research relevance is predefined by the continuous development and improvement of radiation analysis methods and the need for more efficient and accurate detectors for various applications. This research may improve the sensitivity and resolution of Si(Li) detectors, which is important for scientific and industrial research as well as radiation safety monitoring. The research aims to analyse and improve the performance of a Si(Li) lithium-drift silicon detector. The methods used include an analytical method, classification method, functional method, statistical method, synthesis method and others. The results of the two-sided observation of lithium diffusion in silicon monocrystals provided valuable information about the characteristics of the process and its dependence on the method of silicon production. A large-diameter detector detection mode was found to be important for optimising the production of such detectors. The diffusion process in monocrystalline silicon produced by the shadowless zone melting method is relatively fast. This means that lithium ions penetrate the material rapidly and spread evenly throughout its volume. This fast diffusion process can be useful for detectors that need to respond quickly to incoming signals. It was found that in monocrystalline silicon produced by the Czochralski method, there is a delayed penetration of lithium ions.

Publisher

Walter de Gruyter GmbH

Reference20 articles.

1. Saymbetov, A., Muminov, R., Japashov, N., Toshmurodov, Y., Nurgaliyev, M., Koshkarbay, N., Kuttybay, N., Zholamanov, B., Jing, Z. Physical Processes during the Formation of Silicon-Lithium Pin Structures Using Double-Sided Diffusion and Drift Methods. Materials 2021, 14(18), 5174. https://doi.org/10.3390/ma14185174.

2. Muminov, R. A., Radzhapov, S. A., Toshmuradov, Y. K., Risalieva, Sh., Bekbaev, S., Kurmantaev, A. Development and Optimization of the Production Technology of Large-Size Position-Sensitive Detectors. Instrum. Exp. Tech. 2014, 57(5), 564–565. https://doi.org/10.1134/s0020441214040083.

3. Eskendirova, M. M., Tleuova, S. T., Atakhanova, R. A. Physico-Chemical Studies of Tailings for the Enrichment of Ores Containing Precious Metals. Geol. Geogr. Global Energy 2010, 2(37), 31–35.

4. Neshov, F. G., Davydov, A. V., Kosse, A. I., Pulin, A. A., Shulgin, B. V., Zhaparova, S. A., Kidibaev, M. M., Satybaldieva, M. K., Zhamangulov, A. A., Koroleva, T. S. Application of Nuclear Physics Methods for Attestation of Scintillation Detectors on the (Li, Na) FU, Me Base. In International Conference “Nuclear and Radiation Physics”, Almaty: Institute of Nuclear Physics, 2001; pp. 141–142.

5. Cechak, T. Application of X-Ray Fluorescence Method in Coal Industry. In Eurasian Conference on Nuclear Science and its Application, Almaty: Institute of Nuclear Physics, 2002; pp. 352–353.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3