Investigation of effective parameters on SAPO-34 nanocatalyst in the methanol-to-olefin conversion process: a review

Author:

Yang Zhidong12,Zhang Liehui1,Zhou Yuhui3,Wang Hui4,Wen Lichen3,Kianfar Ehsan56

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China

2. The No. 1 Oil Production Plant, Petro China Xinjiang Oilfield Company, Karamay, China

3. Wuhan University, Hubei, China

4. The No. 2 Oil Production Plant, Petro China Xinjiang Oilfield Company, Karamay, China

5. Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

6. Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran, e-mail: e-kianfar94@iau-arak.ac.ir

Abstract

AbstractLight olefins such as ethylene, propylene and butylene are mainly used in the petrochemical industry. Due to the growing need for light olefins in the industry and the future shortage of petroleum resources, the process of converting methanol to olefins (MTO) using non-oil sources has been considered as an alternative. Coal and natural gas are abundant in nature and the methods of converting them to methanol are well known today. Coal gasification or steam reforming of natural gas to produce synthetic gas (CO and hydrogen gas) can lead to methanol production. Methanol can also be catalytically converted to gasoline or olefins depending on the effective process and catalyst factors used. Due to the use of crude methanol in the MTO unit and because the feed does not require primary distillation, if the MTO unit is installed alongside the methanol unit, its capital costs will be reduced. The use of methanol can have advantages such as easier and less expensive transportation than ethane. Among the available catalysts, SAPO-34 is the most suitable catalyst for this process due to its small cavities and medium acidity. One of the problems of MTO units is the rapid deactivation of SAPO-34, which can also be affected by the synthesis factors, so it is possible to optimize the catalyst performance by modifying the synthesis conditions. In this article, we will introduce the MTO process and the factors affecting the production of light olefins.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3