Magnetite hybrid photocatalysis: advance environmental remediation

Author:

Bagheri Samira,Julkapli Nurhidayatullaili Muhd

Abstract

AbstractOne of the main public concerns is the aquatic habitat and its corresponding issues because of the incessant contamination of the ecological water systems. In recent years, research attention has been focused on processes that lead to an improved oxidative degradation of organic pollutants. Therefore, semiconductor photocatalysis technology has aroused scientists’ interest in environmental remediation. Although several semiconductors have proven to be ideal candidates for the treatment of water pollution, the efficient separation and recycling of this fine-powdered photocatalyst is still a scientific problem when applied in practice, including separation process, selectivity, and dispersion. A photocatalyst with magnetic properties allows the use of the technique of magnetic separation, which is one of the most effective and simple methods for removing suspended solids from wastewater without the need for further separation processes. The magnetic photocatalyst allows its use as a suspended material, providing the advantage to have a high surface area for reaction. This review highlights the advantages and disadvantages of current photocatalyst systems. Moreover, it focuses on hybrid magnetic photocatalysts, including metals and nonmetals, metal oxides, carbon-based materials, and ceramics.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3