Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives

Author:

Khan Shahab1ORCID,Ullah Ishfaq1,Rahman Mudassir Ur2,Khan Hamayun3,Shah Abdul Bari4ORCID,Althomali Raed H.5,Rahman Mohammed M.6

Affiliation:

1. School of Chemistry and Chemical Engineering, Shaanxi Normal University , Changan, Xian , Shaanxi 710119 , P.R. China

2. Department of Chemistry , GDC Lundkhwar, Abdul Wali Khan University Mardan, KPK , Mardan , Pakistan

3. Department of Computer Science, Faculty of Computer Science and IT , Superior University Lahore , Lahore , 54000 , Pakistan

4. Natural Products Research Institute, College of Pharmacy, Seoul National University , Seoul 08826 , Republic of Korea

5. Department of Chemistry , College of Art and Science, Prince Sattam bin Abdulaziz University , Wadi Al-Dawasir 11991 , Saudi Arabia

6. Department of Chemistry, Faculty of Science , Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University , Jeddah 21589 , Saudi Arabia

Abstract

Abstract This review covers the basics of, inorganic-polymer composite electrolyte materials that combine inorganic components with polymer matrices to enhance the ionic conductivity and mechanical properties of the electrolyte. These composite electrolytes are commonly employed in solid-state batteries, fuel cells, supercapacitors, and other electrochemical devices. The incorporation of inorganic components, such as ceramic nanoparticles or metal oxides, into a polymer matrix provides several advantages. The inorganic components can improve the overall ionic conductivity by providing pathways for ion transport, reducing the tortuosity of the polymer matrix, and facilitating ion hopping between polymer chains. Additionally, inorganic materials often exhibit higher thermal and chemical stability compared to pure polymers, which can enhance the safety and durability of composite electrolytes. Polymer matrices used in inorganic-polymer composite electrolytes can vary, but common choices include polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polyethylene oxide/polypropylene oxide (PEO/PPO) blends. These polymers offer good mechanical flexibility and processability, allowing for the fabrication of thin films or membranes. The fabrication methods for inorganic-polymer composite electrolytes depend on the specific application and desired properties. Common approaches include solution casting, in situ polymerization, melt blending, and electrospinning. During the fabrication process, the inorganic components are typically dispersed or mixed with the polymer matrix, and the resulting composite is processed into the desired form, such as films, membranes, or coatings. The performance of inorganic-polymer composite electrolytes is evaluated based on their ionic conductivity, mechanical strength, electrochemical stability, and compatibility with the electrode materials. Researchers continue to explore various combinations of inorganic and polymer components, as well as optimization strategies, to further improve the overall performance of these composite electrolytes for advanced energy storage and conversion applications.

Funder

Deanship of Scientific Research, Prince Sattam bin Abdulaziz University

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3