Catalytic oxidation degradation of volatile organic compounds (VOCs) – a review

Author:

Liu Wenju1,Zhang Zheng1,Yuan Kailong12,Dang Dan1,Jin Peng2,Han Xiaofei1,Ge Qun1

Affiliation:

1. School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P.R. China

2. State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization , China Pingmei Shenma Group , Pingdingshan , 467000 , P.R. China

Abstract

Abstract Volatile organic compounds (VOCs) are considered one of the significant contributors to air pollution because they are toxic, difficult to remove, come from a wide range of sources, and can easily cause damage to the environment and human health. There is an urgent need for effective means to reduce their emissions. The current treatment technologies for VOCs include catalytic oxidation, adsorption, condensation, and recovery. Catalytic oxidation technology stands out among the others thanks to its high catalytic efficiency, low energy requirement, and lack of secondary pollution. The difficulty of this technology lies in the development of efficient catalysts. The research on loaded noble metal catalysts and non-noble metal oxide catalysts in this area over the past few years is briefly described in this work. Firstly, the catalytic destruction mechanism of organic volatile compounds is introduced. Secondly, the effects of structural modulation during catalytic oxidation, such as the adjustment of noble metal particle size and morphology, metal doping, and defect engineering, on the conformational relationships are discussed. Finally, the challenges faced by thermal catalytic oxidation for the degradation of VOCs are discussed, and the prospects for its development are presented.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3