Unveiling the multifaceted roles of protonated 1,2-bis(4-pyridyl)ethylene (HBpe+) ligand in metal-driven supramolecular assembly: a comprehensive structural review

Author:

Singha Debabrata1ORCID,Datta Pritha2,Halder Sasthi Charan34,Jana Atish Dipankar45ORCID,Pal Nilasish2ORCID

Affiliation:

1. Department of Chemistry, Physical Chemistry Section , Visva-Bharati University , Santiniketan , Birbhum 731235 , West Bengal , India

2. Department of Chemistry , Seth Anandram Jaipuria College , 10, Raja Nabakrishna Street , Kolkata 700005 , West Bengal , India

3. Department of Physics , Behala College , Parnashree , Kolkata 700060 , West Bengal , India

4. Centre for Research in Nano Science and Crystal Engineering , Sibani Mandal Mahavidyalaya , Namkhana 743357 , West Bengal , India

5. Institute of Astronomy, Space and Earth Science , P 177, CIT Road, Scheme 7m , Kolkata 700054 , West Bengal , India

Abstract

Abstract A protonated form of 1,2-bis(4-pyridyl)ethylene (HBpe+), produced through proton transfer or pH adjustments, plays a significant role in forming unique supramolecular structures. In contrast, non-protonated forms of the molecule (Bpe) are extensively studied in metal-organic complexes. In this review, we examine the fascinating world of HBpe+ as a monodentate ligand in the realm of coordination chemistry. It discusses how protonated ligands influence the assembly of supramolecular structures, as well as their properties and functions. Structures such as 1:1 adduct, coordination polymers, and metal clusters are often formed as a result. In these assemblies, HBpe+ engages in a variety of interactions that influence its supramolecular behavior. The interactions include coordination complexes with metal ions, hydrogen bonds, aromatic ring stacking, and double bond stacking (ππ stacking). The flexibility and conformation of the ligand have a significant impact on the overall structure and stability of complexes. It opens the door to developing functional materials by unraveling the unique attributes and role of HBpe+ in supramolecular assembly. With these insights, it is possible to explore the functional properties of HBpe+ through controlled assembly processes in order to create innovative and functional materials.

Funder

WBDST

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3