Nitric oxide-releasing molecules at the interface of inorganic chemistry and biology: a concise overview

Author:

Mir Jan Mohammad12,Malik Bashir Ahmad12,Maurya Ram Charitra1

Affiliation:

1. Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India

2. Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir

Abstract

AbstractThe useful aspects of nitric oxide (NO) are nowadays widely known. Due to the need for this molecule in the maintenance of homeostasis, NO-releasing compounds are tested every year to optimize its levels in a patient suffering from low NO production. This manuscript is an update of some important historical concerns about nitrosyl complexes having the ability to act as NO-releasing compounds under the influence of different chemically modified environments. At present, the search for efficient and less harmful NO-releasing molecules at desirable targets and concentrations has gained considerable momentum in nitrosyl chemistry. Iron, ruthenium, and manganese nitrosyls have been investigated elitely to disentangle their electronic transition (excitation) under visible light to act as NO donors without harming the healthy cells of a target. There is much evidence supporting the increase of NO lability if amino acids are used as complexing ligands, the design of a reduction center close to an NO grouping, and the development of porphyrin system-based nitrosyl complexes. From the overall survey, it may be concluded that the desirable properties of such scaffolds need to be evaluated further to complement the biological milieu.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3