Metal-centric organic compounds: boon to third-order nonlinear optical applications

Author:

S Shakeel Nawaz1,S Ranganatha1,S Supriya23,Ramakrishna Dileep1ORCID

Affiliation:

1. Department of Chemistry , Presidency University , Yelahanka, 560064 , Bengaluru , India

2. Department of Chemistry , BMS College of Engineering , Bull Temple Road, 560019 , Bengaluru , India

3. Centre for Nanomaterials & Displays, BMS College of Engineering , Bull Temple Road, 560019 , Bengaluru , India

Abstract

Abstract In the recent past the molecular engineering of coordination metal complexes has attracted new interest in the field of nonlinear optics (NLO), which find their applications in optoelectronics and optical data storage technology it is the transition metal along with the organic moieties that induce the control over the optical nonlinearity these properties of the materials not only enhance the intensity but also have a drastic effect on the polarization of incident laser light. This is an important criterion for all-optical switching applications. Coordination metal complexes are a very good target to aim at because of their robustness, physical and chemical stability, and other variable degrees that lead to an increment in NLO responses, most importantly all these properties can be either manipulated or tailored or tunable according to the requirement. Apart from the metal center, these molecules acting as legend must be chromophoric with donor-acceptor nature. In these molecules, the NLO response is intrinsically based on the ‘push-pull’ mechanism of the electrons. Obviously to these molecules, when a metal is in contact, the electronic push-pull mechanism alters rendering the molecule non-symmetric. This review article mainly concentrates on small mononuclear metal complexes for NLO application.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3