Author:
Fahmi Fahmi H.,Al-Zaidee Salah
Abstract
In practice, structural systems are complicated. When dealing with such systems, the use of analytical simulations is or may be impossible to apply, since the problem includes many variables with partial differential formulations. The stability and dynamic response of structures is an important aspect that must be paid particular attention to in order to ensure safety against collapse. A physical phenomenon of a reasonably straight, slender member bending laterally (usually abruptly) from its longitudinal position due to compression is referred to as buckling. Two kinds of buckling can be distinguished: (1) bifurcation-type buckling and (2) deflection-amplification-type buckling. In vibration, frequencies and mode shapes must be known in order to use some methods of dynamic response analysis. To calculate frequencies and modes, an eigenvalue problem is solved in algebraic form. In structural dynamic problems, only the lowermost eigenpairs are of important interest. The highest eigenpairs are not needed and are not accurate due to discretization errors.
Publisher
Engineering, Technology & Applied Science Research
Reference17 articles.
1. N. L. Tran and T. H. Nguyen, "Reliability Assessment of Steel Plane Frame’s Buckling Strength Considering Semi-rigid Connections," Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5099–5103, Feb. 2020.
2. D. Straub and I. Papaioannou, "Bayesian Updating with Structural Reliability Methods," Journal of Engineering Mechanics, vol. 141, no. 3, Mar. 2015, Art. No. 04014134.
3. A. H.-S. Ang and W. H. Tang, Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, 2e Instructor Site: Emphasis on Applications to Civil and Environmental Engineering, 2nd ed. New York, NY, USA: Wiley, 2006.
4. A. Belay, E. OBrien, and D. Kroese, "Truck fleet model for design and assessment of flexible pavements," Journal of Sound and Vibration, vol. 311, no. 3, pp. 1161–1174, Apr. 2008.
5. A. E. Mansour, H. Y. Jan, C. I. Zigelman, Y. N. Chen, and S. J. harding, "Implementation of Reliability Methods to Marine Structures," Transactions - Society of Naval Architects and Marine Engineers, vol. 92, pp. 353–382, 1984.