CYANanobot: Miniaturized Boat-Assisted Data Acquisition for Automated Cyanide Monitoring in Wastewater Using Optical Nano-Sensors

Author:

Loquero J. S.,Demetillo A. T.,Pongcol I. B.,Sakuddin J. M.,Mendoza R. N.,Amper G. L.,Candare R. J. U.,Amarga Y. P. C.,Capangpangan R. Y.

Abstract

Cyanide contamination in water and wastewater is ubiquitous, particularly in gold mining industries, where cyanide is commonly used to extract gold. It is constantly being monitored by collecting samples which are analyzed in the laboratory using traditional cyanide analysis, which requires complicated instrumentation, skilled analysts, and expensive equipment. Using the gold nanoparticle (AuNP)-decorated paper-based sensor employing Whatman Filter Paper (WFP) as a substrate, an automated process for cyanide monitoring with the aid of an assembled and improvised remotely controlled miniature boat was developed. The technology is equipped with a filtration system with automated water sample collection and preparation with an automatic paper sensor dispenser. Images of the collected wastewater samples are taken at different time intervals and are analyzed on their respective color spaces based on 8 mathematical models, each predicting the cyanide level of the water sample. The predictions are compared to the actual Ion-Selective Electrode (ISE) measurement, and Root Mean Square Error (RMSE) values were calculated. The predictions at 165s using the Hue, Saturation, Value (HSV) color space exhibited the highest R2 of 0.85 and the lowest RMSE of 3.80 parts per million (ppm) with an average error of 3.40ppm. The predictions are sent to a database using Global System for Mobile Communications (GSM). The results suggest that the CYANanobot technology facilitates fast analysis time, circumvents the frequent instrument calibration, reduces operating costs, minimizes exposure to toxic cyanide-containing samples, and reduces person-to-person interaction.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photocatalytic activity of ZnO nanomaterials with different morphologies;Digest Journal of Nanomaterials and Biostructures;2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3