Energy Consumption Analysis for the Prediction of Battery Residual Energy in Electric Vehicles

Author:

Unni Keerthi,Thale Sushil

Abstract

The emergence of Electric Vehicles (EVs) is a turning point in decarbonizing the road transport sector. In spite of the various apprehensions of the customers, such as range anxiety, long charging times, higher costs, and the lack of charging infrastructures, EVs have managed to considerably penetrate into the market. Appreciable subsidies in EV purchase and possibilities of renewable energy-based local charging equipment have encouraged more and more people to own EVs. Electrifying road transport also calls for scaling up of all stages of the supply chain as it involves a lot of raw materials and critical metals used for battery technology. One of the most important factors determining the range of an EV is the energy density of the battery, which has reached over 300 Wh/kg, from 100-150 Wh/kg a decade ago. This clearly means that the same vehicle can travel double the distance with the same mass. Understanding and modeling the energy consumption in an EV is quintessential in alleviating the fear of range anxiety. This paper presents a detailed mathematical equation-based energy consumption analysis of a particular EV model for Indian roads. Very few researchers have worked on drive cycles suitable for India. The novelty of the current work is that the energy consumption calculation can be worked out for any EV model or vehicle type through simple mathematical equations.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3