The Effect of Cavitation Water Jet Shock as a Newly Technology on Micro-Forming Process

Author:

Quaisie James Kwasi,Yambah Philip,Tabie Vitus Mwinteribo,Sekyi-Ansah Joseph,Akayeti Anthony,Mohammed Abdul-Hamid

Abstract

This article proposes a novel technology called water jet cavitation shock micro-forming to fabricate micro-features on 304 stainless steel foils with a thickness of 100µm, using a cavitation nozzle with an incident pressure of 8 to 20MPa. This study investigated the surface morphology of the formed part, the influence of incident pressure, target distance, and impact time on the forming depth, and analyzed the punching phenomenon of the formed components. The experimental results after the water jet cavitation shocking indicated that the surface morphology of the formed part of the 304 stainless foil sample had good quality and no conventional defects such as die scratches and cracks. Furthermore, when the incident pressure was 20MPa, the height of the uniform-shaped spherical cap exceeded 262µm. The forming depth increased with increasing incident pressure and impact time. Under an incident pressure of 20MPa, with the increase of target distance, the average depth of the formed part increased at first and then decreased. Finally, the analysis of the blanking phenomenon indicated that when the incident pressure increased to 30MPa, the workpiece was completely blanked. This is mainly because, under this incident pressure, the shockwave pressure generated by the collapse of the bubble deforms the workpiece beyond the stress limit of the material itself.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3