Prediction of the Stress Wave Amplification Factor of a Spherical Blast Source Using Numerical Simulations

Author:

Rehman J. U.,Nguyen C. N.,Nguyen T. A.,Vo T. C.,Nguyen T. K.,Nguyen V. Q.

Abstract

A typical blast wave attenuation curve presents a relationship between Peak Particle Velocity (PPV) at the surface of a geologic profile and distance. As the stress wave is amplified at the free-field boundary, the attenuation curve at the surface is always larger than the within media profile curve. Measurements are made at the rock's surface and test blasts are always conducted to ensure the safety of underground existing structures. In order to design underground blasting, the recorded PPVs are then reduced by a factor of 2. In this paper, particle velocity amplification was studied by using numerical simulation, and the difference between PPV at the surface and within media profiles is quantified. The amplification factor depends upon source depth, incidence angle, and Poisson’s ratio of the media. It is calculated as the ratio of the magnitude of PPV at the surface of the media to the within media profile. According to the parametric study, the amplification factor for a uniform medium increases with increasing source depth, while the amplification factor decreases with increasing Poisson’s ratio. Considering a three-layer model with a source depth of 30m, the amplification factor is high for low incident angles and low for higher incident angles. The range varies between 1.5 to 2.1.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effect of a Blast Load from Propane Gas Leakage on an RC Structure;Engineering, Technology & Applied Science Research;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3