Polarization Effect Assessment of Sub-6 GHz Frequencies on Adult and Child Four-Layered Head Models

Author:

Pudipeddi S. S.,Jayasree P. V. Y.,Chintala S. G.

Abstract

Nowadays, with the extensive use of mobile phones, the Electromagnetic (EM) radiation penetration from Radio Frequencies (RFs), particularly into the human head, is an issue that needs resolving. Some serious biological hazards occur inside the human body due to RF radiation accumulation. The RF radiation can be minimized by embodying shielding and coating materials on the front side of the mobile handset. The novelty of the proposed work is the use of mathematical analysis in calculating the Specific Absorption Rate (SAR) absorbed by planar four-layer adult and child head models when exposed to mobile smartphone RF radiation. The variation of SAR with the Angle of Incident (AoI) of the EM wave considers Transverse Electric (TE) and Transverse Magnetic (TM) Polarization. The SAR absorption alteration with the AoI of the EM wave is calculated with the help of the shielding effectiveness parameter of the external Polyethylene Terephthalate (PET) shield coated with conductive copper (Cu) mesh, forming a laminated shield using the methodology of the transmission line method. Furthermore, the SAR variation with AoI for both human head models is calculated theoretically at Sub-6 GHz mobile frequencies of 4.5GHz and 3.6GHz. SAR of 7.41e-12 W/kg and 4.41e-11 W/kg is achieved theoretically for adult and child head models respectively, at 89° TE polarization at 4.5GHz.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel PIFA Design for SAR Reduction in 5G Networks to Analyze the RF Shield Ιmpact;Engineering, Technology & Applied Science Research;2024-06-01

2. Design of a Shielded Room against EMP Signal as per MIL-STD 461;Engineering, Technology & Applied Science Research;2023-02-01

3. Investigation of the Effect of Normal Incidence of RF Wave on Human Head Tissues Employing Cu and Ni Grid PET Films;Engineering, Technology & Applied Science Research;2022-12-01

4. Development of a Wire Mesh Composite Material for Aerospace Applications;Engineering, Technology & Applied Science Research;2022-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3