Author:
Chami N.,Saigaa D.,Djaiz A.
Abstract
The goal of this project was to provide novel band-pass filter design techniques for mobile communications, which allow a significant reduction in the size of the filters produced. The novelty comes from the transformation of the single layer technique into a double layer technique by inserting coupling slots in a common mass plane. Because of their tiny size, these filters are suitable candidates for integration into mobile communication systems. Indeed, when compared to the dimensions of a single-layer planar filter, the multilayer construction allowed us to reduce the size of the filter by more than 40%. Five U-shaped hairpin resonators were placed on two micro-strip layers in the planned filter. Two apertures etched on a common ground plane positioned between the two layers allow varied couplings between the upper and bottom layer resonators. A five-pole hairpin band-pass filter was created as a result.
Publisher
Engineering, Technology & Applied Science Research
Reference19 articles.
1. Y. Clavet, "Définition de solutions de filtrage planaires et multicouches pour les nouvelles générations de satellites de télécommunications," Ph.D. dissertation, Université de Bretagne Occidentale, 2006.
2. R. Levy and S. B. Cohn, "A History of Microwave Filter Research, Design, and Development," IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1055–1067, Sep. 1984.
3. I. C. Hunter, L. Billonet, B. Jarry, and P. Guillon, "Microwave filters-applications and technology," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 794–805, Mar. 2002.
4. M. Nahas, "A Super High Gain L-Slotted Microstrip Patch Antenna For 5G Mobile Systems Operating at 26 and 28 GHz," Engineering, Technology & Applied Science Research, vol. 12, no. 1, pp. 8053–8057, Feb. 2022.
5. J. D. Rhodes, Theory of Electrical Filters. London, UK ; New York, NY, USA: John Wiley & Sons, 1976.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Realization of Miniatured Wi-Fi 6E Bandpass Filters on a Low-Loss Organic Substrate;IEEE Transactions on Components, Packaging and Manufacturing Technology;2023-11