A Simplified Deformation Estimation Method for Anchor Piles of Sheet Pile Quay Walls under Kinematic Forces during Earthquakes

Author:

Miyashita Kenichiro,Nagao Takashi

Abstract

In the seismic design of quay walls, it is necessary to evaluate the deformation of the walls during earthquakes as well as the safety of structural members. However, conventional seismic design methods for sheet pile quay walls cannot accurately determine the degree of deformation. One reason for this is that conventional methods do not consider kinematic forces acting on an anchor pile due to the deformation of the ground. This study proposes a simplified estimation method for anchor pile deformation under the influence of kinematic forces. The results of two-dimensional finite element analysis reveal that anchor pile deformation involves rotational and translational components caused by the kinematic forces, which the conventional methods do not consider. The deformation of the anchor pile caused by kinematic forces was 30%–40% of the total deformation at the pile head. It was clarified that unlike horizontally stratified ground, shear stress is generated in the ground before an earthquake resulting in the kinematic force acting on the anchor pile during the earthquake. Furthermore, a simplified method for estimating the deformation of the anchor pile under kinematic forces that uses one-dimensional seismic response analysis considering the predicted shear stress based on a theoretical equation is proposed. It was demonstrated that the proposed method accurately reproduces the anchor pile deformation.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Reference47 articles.

1. Technical standards and commentaries for port and harbour facilities in Japan. Tokyo, Japan: The Overseas Coastal Area Development Institute of Japan, 2009.

2. BS EN 1998-1(2004), Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings. London, UK: British Standards Institution, 2004.

3. E. Galal, D. E. Mohamed, and E. Tolba, "A study of sheet pile quay wall rehabilitation methods," Port-Said Engineering Research Journal, vol. 26, no. 3, pp. 37–45, Sep. 2022.

4. G. A. Athanasopoulos et al., "Lateral spreading of ports in the 2014 Cephalonia, Greece, earthquakes," Soil Dynamics and Earthquake Engineering, vol. 128, Jan. 2020, Art. no. 105874.

5. S. Werner et al., "Seismic Performance of Port de Port-au-Prince during the Haiti Earthquake and Post-Earthquake Restoration of Cargo Throughput," Earthquake Spectra, vol. 27, no. 1, pp. 387–410, Oct. 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subgrade Reaction Characteristics to the Anchor Pile of a Sheet Pile Quay Wall;Engineering, Technology & Applied Science Research;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3