The Effect of Tool’s Rake Angles and Infeed in Turning Polyamide 66

Author:

HamaSur Shawbo A.,Abdalrahman Rzgar M.

Abstract

Polyamide PA66 has been adopted by a variety of industries, and engineering fields. It is used in machinery part production due to its good properties. Machining is the most commonly used processing technique when high quality of part dimension and surface is required. There is a lack of knowledge about the impact of the tool’s rake angles when turning polyamide PA66, therefore, this study aims to define an optimal condition that can provide the highest performance in machining polyamide PA66 at the lowest cutting force. The impact of the tool’s side rake angle, back rake angle, and cutting depth on cutting force was studied during turning polyamide PA66 with the HSS tool. Three levels were considered for each variable and Taguchi's Orthogonal Array (OA) was used to design nine test configurations. The tests were performed experimentally on a conventional lathe machine. The resultant cutting force was calculated as the response data. The values were converted to signal-to-noise (S/N) ratio to facilitate the analysis using the Taguchi method and analysis of variance (ANOVA). Accordingly, the cutting depth showed the greatest impact on cutting force (57.12%), followed by the side rake angle (27.9%) and back rake angle (8.21%). An optimal condition set to turn polyamide PA66 at the lowest cutting force (Fc) is identified as 1 mm depth of cut, side rake angle αs = 21°, and back-rake angle αb = 8°. Finally, the optimal condition set was evaluated by conformation tests, and the results agreed with the calculations to a large extent.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on machining of GFRP through ANOVA, DFA, and CoCoSo method combined with Taguchi approach;Journal of Reinforced Plastics and Composites;2024-03-22

2. Selection of cutting insert for longitudinal turning of unalloyed steel using robust decision making;XIX International May Conference on Strategic Management – IMCSM24 Proceedings - zbornik radova;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3