Dynamic Keystroke Technique for a Secure Authentication System based on Deep Belief Nets

Author:

Aljahdali Asia OthmanORCID,Thabit FursanORCID,Aldissi Hanan,Nagro Wafaa

Abstract

The rapid growth of electronic assessment in various fields has led to the emergence of issues such as user identity fraud and cheating. One potential solution to these problems is to use a complementary authentication method, such as a behavioral biometric characteristic that is unique to each individual. One promising approach is keystroke dynamics, which involves analyzing the typing patterns of users. In this research, the Deep Belief Nets (DBN) model is used to implement a dynamic keystroke technique for secure e-assessment. The proposed system extracts various features from the pressure-time measurements, digraphs (dwell time and flight time), trigraphs, and n-graphs, and uses these features to classify the user's identity by applying the DBN algorithm to a dataset collected from participants who typed free text using a standard QWERTY keyboard in a neutral state without inducing specific emotions. The DBN model is designed to detect cheating attempts and is tested on a dataset collected from the proposed e-assessment system using free text. The implementation of the DBN results in an error rate of 5% and an accuracy of 95%, indicating that the system is effective in identifying users' identities and cheating, providing a secure e-assessment approach.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Α Chaotic Map-based Approach to Reduce Black Hole Attacks and Authentication Computational Time in MANETs;Engineering, Technology & Applied Science Research;2024-06-01

2. Advancing Cloud Image Security via AES Algorithm Enhancement Techniques;Engineering, Technology & Applied Science Research;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3