Investigation of Swirl Stabilized CH4 Air Flame with Varied Hydrogen Content by using Computational Fluid Dynamics (CFD) to Study the Temperature Field and Flame Shape

Author:

Bouziane A.,Alami A.,Zaitri M.,Bouchame B.,Bouchetara M.

Abstract

In the current paper, numerical simulations of the combustion of turbulent CH4-H2 are presented employing the standard k-epsilon and the RNG k-epsilon for turbulence closure. The Fr-ED concept is carried out to account for chemistry/ turbulence interaction. The hydrogen content is varied in the fuel stream from 0% to 100%. The numerical solutions are validated by comparison with corresponding experimental data from the Combustion Laboratory of the University of Milan. The flow is directed radially outward. This method of fuel injection has been already been explored experimentally. The results show that the structure of the flame is described reasonably and both standard k-ɛ and RNG k- ɛ models can predict the flame shape. The general aspect of the temperature profiles is well predicted. The temperature profiles are indicating a different trend between CH4 and CH4/H2 fuel mixtures.

Publisher

Engineering, Technology & Applied Science Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3