Collision Avoidance of a Kinodynamically Constrained System from Passive Agents

Author:

Zuhaib K. M.,Iqbal J.,Bughio A. M.,Bukhari S. A. S.,Kanwar K.

Abstract

Robot motion planning in dynamic environments is significantly difficult, especially when the future trajectories of dynamic obstacles are only predictable over a short time interval and can change frequently. Moreover, a robot’s kinodynamic constraints make the task more challenging. This paper proposes a novel collision avoidance scheme for navigating a kinodynamically constrained robot among multiple passive agents with partially predictable behavior. For this purpose, this paper presents a new approach that maps collision avoidance and kinodynamic constraints on robot motion as geometrical bounds of its control space. This was achieved by extending the concept of nonlinear velocity obstacles to incorporate the robot’s kinodynamic constraints. The proposed concept of bounded control space was used to design a collision avoidance strategy for a car-like robot by employing a predict-plan-act framework. The results of simulated experiments demonstrate the effectiveness of the proposed algorithm when compared to existing velocity obstacle based approaches.

Publisher

Engineering, Technology & Applied Science Research

Reference25 articles.

1. [1] E. Prassler, J. Scholz, and P. Fiorini, "A robotics wheelchair for crowded public environment," IEEE Robotics Automation Magazine, vol. 8, no. 1, pp. 38-45, Mar. 2001.

2. [2] A. Breitenmoser, F. Tâche, G. Caprari, R. Siegwart, and R. Moser, "MagneBike: toward multi climbing robots for power plant inspection," in Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Industry track, Richland, SC, USA, May 2010, pp. 1713-1720.

3. [3] J.- Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, "A motion planner for nonholonomic mobile robots," IEEE Transactions on Robotics and Automation, vol. 10, no. 5, pp. 577-593, Oct. 1994.

4. [4] A. Scheuer and T. Fraichard, "Continuous-curvature path planning for car-like vehicles," in Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97, Grenoble, France, Sep. 1997, vol. 2, pp. 997-1003.

5. [5] F. Lamiraux and J.- Lammond, "Smooth motion planning for car-like vehicles," IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp. 498-501, Aug. 2001.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mobile Robot Design for Home Security Systems;Engineering, Technology & Applied Science Research;2024-08-02

2. Sensor Enabled Proximity Detection with Hybridisation of IoT and Computer Vision Models to Assist the Visually Impaired;Engineering, Technology & Applied Science Research;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3