A Novel Fuzzy Logic Based Load Frequency Control for Multi-Area Interconnected Power Systems

Author:

Doan D. V.,Nguyen K.,Thai Q. V.

Abstract

This study focuses on designing an effective intelligent control method to stabilize the net frequency against load variations in multi-control-area interconnected power systems. Conventional controllers (e.g. Integral, PI, and PID) achieve only poor control performance with high overshoots and long settling times. They could be replaced with intelligent regulators that can update controller parameters for better control quality. The control strategy is based on fuzzy logic, which is one of the most effective intelligent strategies and can be a perfect substitute for such conventional controllers when dealing with network frequency stability problems. This paper proposes a kind of fuzzy logic controller based on the PID principle with a 49-rule set suitable to completely solve the problem of load frequency control in a two-area thermal power system. Such a novel PID-like fuzzy logic controller with modified scaling factors can be applied in various practical scenarios of an interconnected power system, namely varying load change conditions, changing system parameters in the range of ±50%, and considering Governor Dead-Band (GDB) along with Generation Rate Constraint (GRC) nonlinearities and time delay. Through the simulation results implemented in Matlab/Simulink software, this study demonstrates the effectiveness and feasibility of the proposed fuzzy logic controller over several counterparts in dealing with the load-frequency control of a practical interconnected power system considering the aforesaid conditions.

Publisher

Engineering, Technology & Applied Science Research

Reference19 articles.

1. [1] N. Nguyen, Q. Huang, and T.-M.-P. Dao, "Modeling and control of a 6-control-area interconnected power system to protect the network frequency applying different controllers," Turkish Joural Of Electrical Engineering And Computer Sciences, vol. 24, pp. 2205-2219, 2016.

2. [2] W. Tan, H. Zhang, and M. Yu, "Decentralized load frequency control in deregulated environments," International Journal of Electrical Power & Energy Systems, vol. 41, no. 1, pp. 16-26, Oct. 2012.

3. [3] Y. Sun, Y. Wang, Z. Wei, G. Sun, and X. Wu, "Robust H∞ load frequency control of multi-area power system with time delay: a sliding mode control approach," IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 610-617, Mar. 2018.

4. [4] N. E. L. Yakine Kouba, M. Menaa, M. Hasni, and M. Boudour, "Load Frequency Control in multi-area power system based on Fuzzy Logic-PID Controller," in 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, Canada, Aug. 2015, pp. 1-6.

5. [5] V. S. Sundaram and T. Jayabarathi, "An artificial neural network approach of load frequency control in a multi area interconnected power system," Elixir Electrical Engineering, vol. 38, pp. 4394-4397, 2011.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3