Performance Improvement for Medical Image Transmission Systems using Turbo-Trellis Coded Modulation (TTCM)
-
Published:2021-04-11
Issue:2
Volume:11
Page:6965-6569
-
ISSN:1792-8036
-
Container-title:Engineering, Technology & Applied Science Research
-
language:
-
Short-container-title:Eng. Technol. Appl. Sci. Res.
Author:
Fayssal M.,Sofiane B. M.,Mahdjoub Z.,Lahcene M. R.,Zerroug A.
Abstract
Digital images have become an essential working tool in several areas such as the medical field, the satellite and astronomical field, film production, etc. The efficiency of a transmission system to exchange digital images is crucial to allow better and accurate reception. Generally, transmitted images are infected with noise. In the medical field, this noise makes the process of diagnosing difficult. To eliminate the transmission errors, an Error Correcting Code (ECC) can be used with the aim to guarantee excellent reception of the images and allowing a good diagnosis. In this paper, source and channel encoding/ decoding functions are studied during medical image transmission (LUNG). At first, the Turbo-Code (TC) is used as ECC and subsequently the Turbo-Trellis Coded Modulation (TTCM). The simulation results represent the curves giving the Bit Error Rate (BER) as a function of the signal to noise ratio (Eb/N0). In order to compare these two systems properly, the MSSIM (Mean Structural Similarity) parameter was used. The obtained results showed the effect and importance of ECC on the transmission of medical images using TTCM which gave better results compared to TC with regard to increasing the performance of the transmission system by eliminating transmission noise.
Publisher
Engineering, Technology & Applied Science Research
Reference23 articles.
1. B. Gharnali and S. Alipour, "MRI Image Segmentation Using Conditional Spatial FCM Based on Kernel-Induced Distance Measure," Engineering, Technology & Applied Science Research, vol. 8, no. 3, pp. 2985-2990, Jun. 2018. https://doi.org/10.48084/etasr.1999 2. L. Jordanova, L. Laskov, and D. Dobrev, "Influence of BCH and LDPC Code Parameters on the BER Characteristic of Satellite DVB Channels," Engineering, Technology & Applied Science Research, vol. 4, no. 1, pp. 591-595, Feb. 2014. https://doi.org/10.48084/etasr.394 3. C. E. Shannon, "A Mathematical Theory of Communication," The Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, Jul., Oct. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x 4. C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1," in Proceedings of ICC '93 - IEEE International Conference on Communications, Geneva, Switzerland, May 1993, vol. 2, pp. 1064-1070. 5. Ha-Young Yang, Suk-Hyun Yoon, and Chang-Con Kang, "Iterative decoding of serially concatenated convolutional codes applying the SOVA," in VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), Ottawa, Canada, May 1998, vol. 1, pp. 353-357.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of Trellis Code Modulation Technology in Satellite High Speed Data Transmission System;2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA);2022-01-21
|
|