A Neural Network-Based Multi-Label Classifier for Protein Function Prediction

Author:

Tahzeeb S.,Hasan S.

Abstract

Knowledge of the functions of proteins plays a vital role in gaining a deep insight into many biological studies. However, wet lab determination of protein function is prohibitively laborious, time-consuming, and costly. These challenges have created opportunities for automated prediction of protein functions, and many computational techniques have been explored. These techniques entail excessive computational resources and turnaround times. The current study compares the performance of various neural networks on predicting protein function. These networks were trained and tested on a large dataset of reviewed protein entries from nine bacterial phyla, obtained from the Universal Protein Resource Knowledgebase (UniProtKB). Each protein instance was associated with multiple terms of the molecular function of Gene Ontology (GO), making the problem a multilabel classification one. The results in this dataset showed the superior performance of single-layer neural networks having a modest number of neurons. Moreover, a useful set of features that can be deployed for efficient protein function prediction was discovered.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer Encoder with Protein Language Model for Protein Secondary Structure Prediction;Engineering, Technology & Applied Science Research;2024-04-02

2. Multi-View Multi-Label Learning Based on Improved Fusion Strategy;2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT);2023-11-10

3. The Use of Recurrent Nets for the Prediction of e-Commerce Sales;Engineering, Technology & Applied Science Research;2023-06-02

4. A Cluster-based Undersampling Technique for Multiclass Skewed Datasets;Engineering, Technology & Applied Science Research;2023-06-02

5. Differential Gene Expression Analysis of Non-Small Cell Lung Cancer Samples to Classify Candidate Genes;Engineering, Technology & Applied Science Research;2023-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3