Abstract
In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increased by 11%, 11.5%, and 14% after 3, 7, and 28 days when utilizing fibers. The result shows that fly ash with a ratio of 50% by weight of slag improved the compressive strength of the mixture. It was discovered that a combination with 50% of the weight of fly ash with micro steel fibers, when treated at 240oC for curing age of 3, 7, and 28 days, had a flexural resistance rate of 28%, 30%, 33% higher than a mixture without fibers.
Publisher
Engineering, Technology & Applied Science Research
Reference18 articles.
1. D. Hardjito and B. Rangan, "Development and Properties of Low-Calcium Fly Ash Based Geopolymer Concrete," Curtin University of Technology, Perth, Australia, Research Report GC 1, 2005.
2. M. S. Imbabi, C. Carrigan, and S. McKenna, "Trends and developments in green cement and concrete technology," International Journal of Sustainable Built Environment, vol. 1, no. 2, pp. 194–216, Dec. 2012.
3. Z. F. Muhsin and N. M. Fawzi, "Effect of Fly Ash on Some Properties of Reactive Powder Concrete," Journal of Engineering, vol. 27, no. 11, pp. 32–46, Nov. 2021.
4. A. Sicakova, E. Kardosova, and M. Spak, "Perlite Application and Performance Comparison to Conventional Additives in Blended Cement," Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5613–5618, Jun. 2020.
5. V. T. Phan and T. H. Nguyen, "The Influence of Fly Ash on the Compressive Strength of Recycled Concrete Utilizing Coarse Aggregates from Demolition Works," Engineering, Technology & Applied Science Research, vol. 11, no. 3, pp. 7107–7110, Jun. 2021.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献