A Ternary Neural Network with Compressed Quantized Weight Matrix for Low Power Embedded Systems

Author:

Truong S. N.

Abstract

In this paper, we propose a method of transforming a real-valued matrix to a ternary matrix with controllable sparsity. The sparsity of quantized weight matrices can be controlled by adjusting the threshold during the training and quantizing process. A 3-layer ternary neural network was trained with the MNIST dataset using the proposed adjustable dynamic threshold. The sparsity of the quantized weight matrices varied from 0.1 to 0.6 and the obtained recognition rate reduced from 91% to 88%. The sparse weight matrices were compressed by the compressed sparse row format to speed up the ternary neural network, which can be deployed on low-power embedded systems, such as the Raspberry Pi 3 board. The ternary neural network with the sparsity of quantized weight matrices of 0.1 is 4.24 times faster than the ternary neural network without compressing weight matrices. The ternary neural network is faster as the sparsity of quantized weight matrices increases. When the sparsity of the quantized weight matrices is as high as 0.6, the recognition rate degrades by 3%, however, the speed is 9.35 times the ternary neural network's without compressing quantized weight matrices. Ternary neural network work with compressed sparse matrices is feasible for low-cost, low-power embedded systems.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3