Author:
Sahli Z.,Hamouda A.,Sayah S.,Trentesaux D.,Bekrar A.
Abstract
This paper presents the design and application of an efficient hybrid algorithm for solving the Optimal Reactive Power Flow (ORPF) problem. The ORPF is formulated as a nonlinear constrained optimization problem where the active power losses must be minimized. The proposed approach is based on the hybridization of Particle Swarm Optimization (PSO) and Tabu-Search (TS) technique. The proposed PSO-TS approach is used to find the settings of the control variables (i.e. generation bus voltages, transformer taps, and shunt capacitor sizes) which minimize transmission active power losses. The bus locations of the shunt capacitors are identified according to sensitive buses. To show the effectiveness of the proposed method, it is applied to the IEEE 30 bus benchmark test system and is compared with PSO and TS without hybridization, along with some other published approaches. The obtained results reveal the effectiveness of the proposed method in dealing with the highly nonlinear constrained nature of the ORPF problem.
Publisher
Engineering, Technology & Applied Science Research
Reference41 articles.
1. B. Zhao, C. X. Guo, and Y. J. Cao, "A multiagent-based particle swarm optimization approach for optimal reactive power dispatch," IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 1070–1078, Feb. 2005.
2. H. Yapici, "Solution of optimal reactive power dispatch problem using pathfinder algorithm," Engineering Optimization, vol. 53, no. 11, pp. 1946–1963, Aug. 2021.
3. A. Abbasy and S. H. Hosseini, "Ant Colony Optimization-Based Approach to Optimal Reactive Power Dispatch: A Comparison of Various Ant Systems," in IEEE Power Engineering Society Conference and Exposition in Africa - PowerAfrica, Johannesburg, South Africa, Jul. 2007, pp. 1–8.
4. B. Zhao, C. X. Guo, and Y. J. Cao, "An improved particle swarm optimization algorithm for optimal reactive power dispatch," in IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, Jun. 2005, pp. 272-279 Vol. 1.
5. N. Deeb and S. M. Shahidehpour, "Linear reactive power optimization in a large power network using the decomposition approach," IEEE Transactions on Power Systems, vol. 5, no. 2, pp. 428–438, Feb. 1990.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献