Author:
Qasim M. F.,Abbas Z. K.,Abed S. K.
Abstract
Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste replacement and increased by 11.16% and 19.86% for 5% and 10% silica sand replacement. Splitting tensile strength decreased by 12.74% and 20.22% for 10% and 20% plastic waste replacement and increased by 10.86% and 19.66% for 5% and 10% silica sand replacement. Dry density decreased by 4.51% and 7.83% for 10% and 20% plastic waste replacement and increased by 2.78% and 4.10% for 5% and 10% silica sand replacement respectively at 28 days.
Publisher
Engineering, Technology & Applied Science Research
Reference28 articles.
1. N. Agarwal and N. Garg, "A Research on Green Concrete," IJIRMPS - International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, vol. 4, no. 4, Jul. 2016, https://doi.org/10.17605/OSF.IO/9MBZN.
2. B. Suhendro, "Toward Green Concrete for Better Sustainable Environment," Procedia Engineering, vol. 95, pp. 305–320, Jan. 2014, https://doi.org/10.1016/j.proeng.2014.12.190.
3. B. Rai, S. T. Rushad, B. Kr, and S. K. Duggal, "Study of Waste Plastic Mix Concrete with Plasticizer," ISRN Civil Engineering, vol. 2012, May 2012, Art. no. e469272, https://doi.org/10.5402/2012/469272.
4. P. S. Patil, J. R. Mali, G. V. Tapkire, and H. R. Kumavat, "Innovative techniques of waste plastic used in concrete mixture," International Journal of Research in Engineering and Technology, vol. 3, no. 9, pp. 29–32, Jun. 2014, https://doi.org/10.15623/ijret.2014.0321008.
5. S. A. Chandio, B. A. Memon, M. Oad, F. A. Chandio, and M. U. Memon, "Effect of Fly Ash on the Compressive Strength of Green Concrete," Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5728–5731, Jun. 2020, https://doi.org/10.48084/etasr.3499.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献