Load Shedding in Microgrids with Dual Neural Networks and AHP Algorithm

Author:

Nhung L. T. H.,Phung T. T.,Nguyen H. M. V.ORCID,Le T. N.ORCID,Nguyen T. A.ORCID,Vo T. D.

Abstract

This paper proposes a new load shedding method based on the application of a Dual Neural Network (NN). The combination of a Back-Propagation Neural Network (BPNN) and of Particle Swarm Optimization (PSO) aims to quickly predict and propose a load shedding strategy when a fault occurs in the microgrid (MG) system. The PSO algorithm has the ability to search and compare multiple points, so the proposed NN training method helps determine the link weights faster and stronger. As a result, the proposed method saves training time and achieves higher accuracy. The Analytic Hierarchy Process (AHP) algorithm is applied to rank the loads based on their importance factor. The results of the ratings of the loads serve as a basis for constructing the load shedding strategies of a NN combined with the PSO algorithm (ANN-PSO). The proposed load shedding method is tested on an IEEE 25-bus 8-generator MG power system. The simulation results show that the frequency recovery of the power system is positive. The proposed neural network adapts well to the simulated data of the system and achieves high performance in fault prediction.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing the Power System Operation Problem towards minimizing Generation and Damage Costs due to Load Shedding;Engineering, Technology & Applied Science Research;2023-10-13

2. The Efficacy of the Strategy Planning Process Criteria based on the Fuzzy Analytical Hierarchy Process;Engineering, Technology & Applied Science Research;2023-08-09

3. Applying Fuzzy VIKOR algorithm in load ranking for load shedding problem in Microgrid;2023 International Conference on System Science and Engineering (ICSSE);2023-07-27

4. Reliability-Based Optimal Integrated Microgrid Scheduling in Distribution Systems;Engineering, Technology & Applied Science Research;2023-04-02

5. A Comparative Study of Reinforced Soil Shear Strength Prediction by the Analytical Approach and Artificial Neural Networks;Engineering, Technology & Applied Science Research;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3