Parametric Analysis of the Defected Ground Structure-Based Hairpin Band Pass Filter for VSAT System on Chip Applications

Author:

Ambati N.,Immadi G.,Narayana M. V.,Bareddy K. R.,Prapurna M. S.,Yanapu J.

Abstract

In this study, a three-pole hairpin structure was fabricated on the top of the substrate material and an open loop microstrip structure at the ground to give a modified triple-band BPF with a unique design. A Rogers (RT5880) material with εr = 2.2 and thickness of 1.27mm was used to fabricate the proposed structure. The space between two consecutive hairpin resonators has different distances d1 and d2 with values of 0.2mm and 0.4mm respectively. The proposed filter offers a compact size with low return loss. The equivalent LC circuit of the DGS and hairpin structure is obtained with the Ansys electronic desktop and by using simple circuit analysis. The desired microstrip triple-band BPF operates at the Ku band, resonates at 10.28GHz, 12GHz, and 14.62GHz, while the simulated and experimental results are almost identical. The proposed wideband BPF satisfies the International Telecommunication Union ((ITU) region 3 spectrum requirements. Direct Broadcast Service (DBS) and Fixed Satellite Service (FSS) in transmit mode respectively employ the frequency band 11.41-12.92GHz and 14-14.5GHz.

Publisher

Engineering, Technology & Applied Science Research

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Analysis of a Quad Band BPF Using Ring Resonator;2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS);2023-11-02

2. A Non-destructive Radar Device for Detecting Additive Materials in Concrete;Engineering, Technology & Applied Science Research;2023-06-02

3. The Application of LQG Balanced Truncation Algorithm to the Digital Filter Design Problem;Engineering, Technology & Applied Science Research;2022-12-15

4. Broadband antenna design with multiple slots for satellite applications;2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet);2022-12-12

5. Flexible ku/k band frequency reconfigurable bandpass filter;AIMS Electronics and Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3