Abstract
A new photovoltaic cell modeling based on an electronically tunable edge filter is presented in this paper. The new model is subjected to temperature, illumination, and resistance variations. In addition, an MPPT (Maximum Power Point Tracker) command was exposed with a calculation algorithm based on a microcontroller card that used the behavior of an electronically tunable edge filter. The results confirm those published in the literature, showing the influence of the position of the leakage variation in our model, which can give more power. The simulation results show that the proposed command is efficient to determine the MPP point.
Publisher
Engineering, Technology & Applied Science Research
Reference21 articles.
1. [1] K. Kassmi, M. Hamdaoui, and F. Olivié, "Conception et modélisation d'un système photovoltaïque adapté par une commande MPPT analogique," Revue des Energies Renouvelables, vol. 10, no. 4, pp. 451-462, 2007.
2. [2] H. Rezk and E.-S. Hasaneen, "A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems," Ain Shams Engineering Journal, vol. 6, no. 3, pp. 873-881, Sep. 2015.
3. [3] Y. Cheddadi, F. Errahimi, and N. Es-sbai, "Design and verification of photovoltaic MPPT algorithm as an automotive-based embedded software," Solar Energy, vol. 171, pp. 414-425, Sep. 2018.
4. [4] N. Pandiarajan, R. Ramaprabha, and R. Muthu, "Application of Circuit Model for Photovoltaic Energy Conversion System," International Journal of Photoenergy, vol. 2012, Mar. 2012, Art. no. e410401.
5. [5] H. Attoui, F. Khaber, M. Mustapha, K. Kassmi, and N. Essounbouli, "Development and experimentation of a new MPPT synergetic control for photovoltaic systems," Journal of Optoelectronics and Advanced Materials, vol. 18, no. 1-2, pp. 165-173, Jan. 2016.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献