Efficiency Improvement of Permanent Magnet BLDC Motors for Electric Vehicles

Author:

Minh D. B.,Quoc V. D.,Huy P. N.

Abstract

A permanent magnet Brushless DC (BLDC) motor has been designed with different rotor configurations based on the arrangement of the permanent magnets. Rotor configurations strongly affect the torque and efficiency performance of permanent magnet electric motors. In this paper, different rotor configurations of the permanent magnet BLDC motor with parallel the Halbach array permanent magnet were compared and evaluated. Many applications of electric drives or air-crafts have recently preferred the surface-mounted permanent magnet design due to its ease of construction and maintenance. The finite element technique has been used for the analysis and comparison of different geometry parameters and rotor magnet configurations to improve efficiency and torque performance. A comprehensive design of a three-phase permanent magnet BLDC 35kW motor is presented and simulations were conducted to evaluate its design. The skewing rotor and Halbach magnet array are applied to the permanent surface-mounted magnet on the BLDC motor for eliminating torque ripples. In order to observe the skewing rotor effect, the rotor lamination layers were skewed with different angles and Halbach sinusoidal arrays. The determined skewing angle, the eliminated theoretically cogging torque, and the back electromotive force harmonics were also analyzed.

Publisher

Engineering, Technology & Applied Science Research

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speed control of Brushless DC motor in discrete delta domain: A unified approach;2023 IEEE 3rd Applied Signal Processing Conference (ASPCON);2023-11-24

2. Efficiency Improvement of Electrical Vehicles Using Novel Permanent Magnet Motors and Compared with BLDC Motors by Reducing Power Loss;2023 6th International Conference on Contemporary Computing and Informatics (IC3I);2023-09-14

3. Transient Analysis of the Fuzzy Logic-based Speed Control of a Three-phase BLDC Motor;Engineering, Technology & Applied Science Research;2023-02-01

4. Investigation of the Influence of Skewed Slots and Degmagnetization Effects to Line Start Permanent Magnet Assistance Synchronous Reluctance Motors;Engineering, Technology & Applied Science Research;2023-02-01

5. Analytical Technique for Computation of the Back EMF and Electromagnetic Torque for IPM Motors;2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS);2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3