Modeling and Comparison of Fuzzy-PI and Genetic Control Algorithms for Active and Reactive Power Flow between the Stator (DFIG) and the Grid

Author:

Guediri A.,Guediri A.,Touil S.

Abstract

This paper performs a comparison between Fuzzy-PI regulators and Genetic Algorithm (GA) for controlling an active and reactive Doubly-Fed Induction Generator (DFIG) for providing power to the electrical grid. Theoretical analysis, modeling, and simulation studies are provided. Control strategies were developed for both active and reactive forces in order to optimize energy production. The performance of the two control strategies was examined and compared using benchmarks for durability and reference traceability. This paper studied a system consisting of a wind turbine operating at variable wind speed and a two-feed asynchronous machine (DFIG) connected to the grid by the stator and fed by a transducer at the side of the rotor. The conductors were separately controlled for active and reactive power flow between the stator (DFIG) and the grid, which was achieved in this article using conventional PI and fuzzy logic controllers. The considered controllers generated reference voltages for the rotor to ensure that the active and reactive power reached the required reference values. This was done in order to ensure effective tracking of the optimum operating point and the maximum output of electrical power. System modeling and simulation were examined in Matlab/Simulink. Dynamic analysis of the system was performed under variable wind speed.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Persistent Voltage Control of a Wind Turbine-Driven Isolated Multiphase Induction Machine;Engineering, Technology & Applied Science Research;2023-10-13

2. Analyzing the Effects of MBPSS on the Transit Stability and High-Level Integration of Wind Farms during Fault Conditions;Engineering, Technology & Applied Science Research;2023-06-02

3. Chaos Control of Doubly-Fed Induction Generator via Delayed Feedback Control;Engineering, Technology & Applied Science Research;2023-04-02

4. Improved Torque Ripple of Switched Reluctance Motors using Sliding Mode Control for Electric Vehicles;Engineering, Technology & Applied Science Research;2023-02-05

5. Analysis of a Frictionless Electro Viscoelastic Contact Problem with Signorini Conditions;Engineering, Technology & Applied Science Research;2022-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3