Author:
Zaher K.,Masango N. E.,Sobhi W.,Kanouni K. E.,Semmeq A.,Benguerba Y.
Abstract
In the present study, we will verify the action of hydroxychloroquine-based derivatives on ACE2 which is considered to be the main portal of entry of the SARS-CoV-2 virus and constitutes an exciting target given its relative genetic stability compared to viral proteins. Thus, 81 molecules derived from hydroxychloroquine by substitutions at 4 different positions were generated in-silico and then studied for their affinity for ACE2 by molecular docking. Only 4 molecules were retained because of their affinity and bioavailability demonstrated by molecular dynamics and molecular docking calculations using COSMOtherm and Materials Studio software.
Publisher
Engineering, Technology & Applied Science Research