Abstract
During the last two decades, the attention of researchers has been focused on repairing and retrofitting concrete frames to make them more earthquake-resistant. Two methods have been developed to increase the seismic resistance of previously undamaged structures before they are subjected to an earthquake. The first is through the addition of new structural members, such as steel braces and the second is by selectively strengthening structural elements, for instance through steel caging. Seismic response analysis results have been utilized in multi-story RC frames that were designed without seismic design criteria. This study aims to determine whether the retrofitting technique is effective based on comparisons between steel braces, steel cages, and their combinations. The seismic performance is defined by the seismic code for Algeria RPA 2003 according to the latest recommendations. Static nonlinear analysis was used to compare seismic responses of existing non-ductile reinforced concrete RC frames under a variety of retrofit schemes. The results show that retrofitting with steel caging gives excellent performance in terms of ductility and low shear capacity. The retrofitting with steel bracing increased the shear capacity but led to a severe ductility deficiency. The retrofitting structure combined with steel bracing and steel caging shows good performance in shear capacity and ductility. Using the Zipper system (steel bracing) and V system in combination with steel caging gives similar results to the RPA model.
Publisher
Engineering, Technology & Applied Science Research
Reference31 articles.
1. I. Sekiguchi, T. Okada, M. Murakami, F. Kumazawa, F. Horie, and M. Seki, "Seismic Strengthening of An Existing Steel Reinforced Concrete City Office Building," in 9th World Conference on Earthquake Engineering, Tokyo, Japan, Aug. 1988, vol. VII, pp. 439–444.
2. M. Badoux and J. O. Jirsa, "Steel Bracing of RC Frames for Seismic Retrofitting," Journal of Structural Engineering, vol. 116, no. 1, pp. 55–74, Jan. 1990.
3. T. D. Bush, E. A. Jones, and J. O. Jirsa, "Behavior of RC Frame Strengthened Using Structural Steel Bracing," Journal of Structural Engineering, vol. 117, no. 4, pp. 1115–1126, Apr. 1991.
4. M. R. Maheri, R. Kousari, and M. Razazan, "Pushover tests on steel X-braced and knee-braced RC frames," Engineering Structures, vol. 25, no. 13, pp. 1697–1705, Nov. 2003.
5. A. Kadid and D. Yahiaoui, "Seismic Assessment of Braced RC Frames," Procedia Engineering, vol. 14, pp. 2899–2905, Jan. 2011.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献