Author:
Khelil F.,Belhouari M.,Benseddiq N.,Talha A.
Abstract
An evaluation technique of the KI stress intensity factors (SIF) by a numerical investigation using line strain method is presented in this paper. The main purpose of this research is to re-analyze experimental results of fracture loads from polymethyl-metacrylate (PMMA) specimens (fully finite plates). Stress intensity factor equation calculation is derived from the Williams stress asymptotic expansion. Possible error caused by strain gradients across the gage length is minimized by integrating the equation in the KI calculation. Theoretical and computed values using finite element analysis of stress intensity factors are compared with experimental results. A good agreement is observed between the present approach and experimental values. It is shown that, in the case of a through-plate crack, the stress intensity factor can be calculated with adequate accuracy using the proposed method.
Publisher
Engineering, Technology & Applied Science Research
Reference32 articles.
1. G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate”, Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957
2. J. W. Dally, R. J. Sanford, “Strain gage methods for measuring the opening mode stress intensity factor KI”, Experimental Mechanics, Vol. 27, pp. 381-388, 1987
3. J. W. Dally, R. J. Sanford, “Measuring the stress intensity factor for propagating cracks with strain gages”, Journal of Testing and Evaluation, Vol. 18 No. 4, pp. 240–249, 1990
4. J. W. Dally, W. F. Riley, Experimental stress analysis, McGraw-Hill, New York, 1965
5. J. R. Berger, J. W. Dally, “An overdeterministic approach for measuring KI using strain gages”, Experimental Mechanics, Vol. 28, No. 2, pp.142-145, 1988
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献