Investigation on the Performance of a Portable Power Generation System with a Low-Cost Vertical Axis Wind Turbine

Author:

Basar M. F.,Norazizi A. M.,Mustaffa I.,Colin C. T.,Mirin S. N. S.,Jano Z.

Abstract

The purpose of this project was to develop an innovative, small-scale, and portable vertical axis wind turbine for power generation. The wind turbine was simple in design and economical. Wind speeds ranging from 2.0ms-1 to 7.0ms-1 were tested on the proposed wind turbine. The experiments revealed that the turbine required a minimum wind speed of 3.9ms-1 to operate. According to the results, the proposed turbine achieved its maximum power output of 5.6W at a rotational speed of 65rpm when the wind speed was 7.0m/s. Additionally, voltage and current increased proportionately with increasing wind speed. The proposed system showed an average coefficient factor between 0.10 and 0.12. This portable wind turbine potentially revolutionizes industry while raising public awareness about clean and renewable energy.

Publisher

Engineering, Technology & Applied Science Research

Reference23 articles.

1. "EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia," US Energy Information Administration - Today in Energy, Sep. 24, 2019. https://www.eia.gov/todayinenergy/detail.php?id=41433 (accessed Oct. 26, 2021).

2. I. Malael and V. Dragan, "Numerical and Experimental Efficiency Evaluation of a Counter-Rotating Vertical Axis Wind Turbine," Engineering, Technology & Applied Science Research, vol. 8, no. 4, pp. 3282–3286, Aug. 2018, https://doi.org/10.48084/etasr.2231.

3. M. B. Farriz, A. N. Azmi, N. A. M. Said, A. Ahmad, and K. A. Baharin, "A study on the wind as a potential of renewable energy sources in Malaysia," in ECTI-CON2010: The 2010 ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang Mai, Thailand, May 2010, pp. 651–655.

4. P. A. C. Rocha et al., "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, vol. 148, pp. 169–178, Apr. 2018, https://doi.org/10.1016/j.energy.2018.01.096.

5. W. Tian, Z. Mao, B. Zhang, and Y. Li, "Shape optimization of a Savonius wind rotor with different convex and concave sides," Renewable Energy, vol. 117, pp. 287–299, Mar. 2018, https://doi.org/10.1016/j.renene.2017.10.067.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control Design for the Ward–Leonard System in Wind Turbines;Engineering, Technology & Applied Science Research;2023-02-05

2. Computational analysis of fence-type vertical axis wind turbines array suitable for urban architecture integration;2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3