Influence of Membrane Type on Some Electrical Properties of a Single Microbial Fuel Cell

Author:

Bouzidi H.,Otmani L.,Doufnoune R.,Zerroual L.,Benachour D.

Abstract

The effects of different parameters on the electric output of air-cathode microbial fuel cells were investigated in this work. The single microbial fuel cell was equipped by modifying Proton Exchange Membranes (PEM). Two membrane types were prepared: first by using the combination of Poly Vinyl Alcohol (PVA) with Polystyrene Sulfonate (PSSNa), while the second membrane was elaborated by mixing Poly Vinyl Chloride (PVC) with Methyl Tri-Octyl Ammonium (MTOA) chloride. The PEMs were incorporated into the air-cathode to form a Membrane Electrode Assembly (MEA) to promote electricity generation. PVA/PSSNa and PVC-MTOA membranes were synthesized by solution casting method. Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet (UV) Visible spectroscopy, Scanning Electronique Microscope (SEM), Differential Scanning Calorimetry (DSC), and water Contact Angle (CA) were used as characterization techniques to explore the membrane structure and properties. The performance and the electric capacity of the microbial fuel cell in real time were operated using an external resistance of 5kΩ. Impedance and resistance capacity were determined using the polarization method. It was found that the internal resistance of the PVA/PSSNa and PVC-MTOA membranes were 50 and 350Ω respectively. The voltage values at open circuit of the cells using PVA/PSSNa and PVC-MTOA membranes were 600mV and 150mV respectively. The values of power, current, and power density, are quite interesting. Cells with PVA/PSSNa and PVC-MTOA membranes gave values of 18.24 and 9.64mW.cm-2 respectively.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3