Trajectory Tracking Control Design of a Mass-Damping-Spring System with Uncertainty using the Bond Graph Approach

Author:

Dif I.,Kouzou A.,Benmahammed K.,Hafaifa A.

Abstract

This paper deals with the simulation, and design of a trajectory-tracking control law for a physical system under parameter uncertainty modeled by a bond graph. This control strategy is based on the inversion of the system through their causal Input/Output (I/O) path using the principle of bicausality to track the desired trajectory. The proposed control strategy is validated with the use of a simple mechanical mass-spring-damper system. The results show that the bond graph is a very helpful methodology for the design of control laws in the presence of uncertainties. This proposed control can be applied in several applications and can be improved to ensure robust control.

Publisher

Engineering, Technology & Applied Science Research

Reference29 articles.

1. [1] S. Junco, A. Donaire, and G. Garnero, "Speed control of series DC motor: a bond graph based backstepping design," in IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, Oct. 2002, vol. 3.

2. [2] C. S. Kam and G. Dauphin-Tanguy, "Bond graph tools for standard interconnection structure determination," in Proceedings of the 2001 International Conference on Bond Graph Modeling and Simulation (ICBGM'01), Phoenix, AZ, USA, Jan. 2001.

3. [3] C. Sié Kam and G. Dauphin-Tanguy, "Bond graph models of structured parameter uncertainties," Journal of the Franklin Institute, vol. 342, no. 4, pp. 379-399, Jul. 2005.

4. [4] W. Borutzky and G. Dauphin-Tanguy, "Incremental bond graph approach to the derivation of state equations for robustness study," Simulation Modelling Practice and Theory, vol. 12, no. 1, pp. 41-60, Apr. 2004.

5. [5] M. A. Djeziri, B. Ould Bouamama, and R. Merzouki, "Modelling and robust FDI of steam generator using uncertain bond graph model," Journal of Process Control, vol. 19, no. 1, pp. 149-162, Jan. 2009.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Algorithm for Modelling Complex Physical Systems with Bond-Graph and Python Integration;2024 International Telecommunications Conference (ITC-Egypt);2024-07-22

2. Dynamic Modeling and Simulation of Double-Planetary Gearbox Based on Bond Graph;Mathematical Problems in Engineering;2021-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3