80 kW Updraft Gasifier Performance Test using Biomass Residue Waste from Thailand Rural Areas

Author:

Sookramoon K.

Abstract

This research presents the combustion test of Kanchanaburi’s residue waste used in an 80kW updraft gasifier as biomass fuel. Three types of selected biomass were considered: corncob, bagasee, and straw. The 80kW updraft gasifier was designed, fabricated, and experimentally studied. In the gasifier, a variable speed centrifugal fan acted as a forced convection unit, which was installed near the combustion chamber and transferred air volume to the updraft gasifier stove. The experimental results show the temperature in each zone of the thermochemical processes. The gasifier was evaluated by comparing the performance of the 3 different biomass fuels. The average producer gas from the burning of corncob, bagasee, and straw was 2.31m3/kg, 2.15m3/kg, and 2.11m3/kg respectively in the updraft gasifier. The recorded stove running times (h) for were 1.24, 1.2 and 1.05, respectively. The producer gas can be used to run a local cooking stove kiln with at normal rated heat generation successfully.

Publisher

Engineering, Technology & Applied Science Research

Reference18 articles.

1. [1] Biomass Energy. Department of Alternative Energy Development and Efficiency, Ministry of Energy, Thailand.

2. [2] "Updraft Biomass Gasifier," indiamart.com. https://www.indiamart.com/proddetail/updraft-biomass-gasifier-14040553933.html (accessed Sep. 30, 2020).

3. [3] A. Gagliano, F. Nocera, M. Bruno, and G. Cardillo, "Development of an Equilibrium-based Model of Gasification of Biomass by Aspen Plus," Energy Procedia, vol. 111, pp. 1010-1019, Mar. 2017.

4. [4] R. K. Dabkeya, D. K. Dhaked, and M. Lalwani, "An Overview of Gasifier and Its Application in Indian Context," in Emerging Trends in Electrical, Communications, and Information Technologies, Singapore, 2020, pp. 291-307.

5. [5] A. Pandey, S. V. Mohan, J. S. Chang, P. Hallenbeck, and C. Larroche, Biomass, Biofuels, Biochemicals, 2nd ed., Elsevier, 2019.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Porosity on Combustion Performance in Packed Bed Porous Media;Engineering, Technology & Applied Science Research;2024-06-01

2. Temperature Evolution and Heating Rates of Biomass undergoing Ablative Pyrolysis;Engineering, Technology & Applied Science Research;2023-04-02

3. Harnessing Electrical Power from Hybrid Biomass-Solid Waste Energy Resources for Microgrids in Underdeveloped and Developing Countries;Engineering, Technology & Applied Science Research;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3