Remote Sensing Techniques for Classification and Mapping of Sugarcane Growth

Author:

Villareal M. K.,Tongco A. F.

Abstract

This study aimed to apply remote sensing technologies in delineating sugarcane (Saccharum officinarum) plantations and in identifying its growth stages. Considering the growing demand for sugarcane in the local and global markets, the need for a science-based resource inventory emerges. In this sense, remote sensing techniques’ unique ability is vital to monitor crop growth and estimate crop yield. Object-Based Image Analysis (OBIA) concept was employed by utilizing orthophotos and Light Detection And Ranging (LiDAR) datasets. Specifically, the study applied the Support Vector Machine (SVM) algorithm to generate the resource map, validated by a handheld Global Positioning System (GPS). The classification result showed an accuracy of 98.4%, delineating a total of 13.93 hectares of sugarcane plantation in the study area. The height information from LiDAR datasets aided in developing the rule-set that can further classify the sugarcane according to its growth stages. Results showed that the area distribution of sugarcane at establishment, tillering, yield formation, and ripening stage were 6.65%, 11.61%, 13.89%, and 17.90% respectively. GPS validation points of the growth stages verified the accuracy of SVM. The accuracy results for growth stages, i.e. establishment, tillering, yield formation, and ripening are 88%, 94.4%, 96.3%, and 91.7% respectively. The results proved the usefulness of SVM as a remote sensing classification technique which led to an exact mapping of the sugarcane areas as well as the practical use of LiDAR height information in estimating the growth stages of the mapped resource, both of which can provide valuable aid in estimating the potential sugarcane yield in the future.

Publisher

Engineering, Technology & Applied Science Research

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supervised NDVI Composite Thresholding for Arid Region Vegetation Mapping;Engineering, Technology & Applied Science Research;2024-06-01

2. Estimating the Aboveground Fresh Weight of Sugarcane Using Multispectral Images and Light Detection and Ranging (LiDAR);Land;2024-05-01

3. Making Different Topographic Maps with the Surfer Software Package;Engineering, Technology & Applied Science Research;2024-02-08

4. The Potential of Landsat 8 OLI Images in Coastline Identification: The Case Study of Basra, Iraq;Engineering, Technology & Applied Science Research;2024-02-08

5. A Review of Remote Sensing in Sugarcane Mapping;2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics);2023-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3