Sentiment Aware Stock Price Forecasting using an SA-RNN-LBL Learning Model

Author:

Gurav U. P.,Kotrappa S.

Abstract

Stock market historical information is often utilized in technical analyses for identifying and evaluating patterns that could be utilized to achieve profits in trading. Although technical analysis utilizing various measures has been proven to be helpful for forecasting and predicting price trends, its utilization in formulating trading orders and rules in an automated system is complex due to the indeterminate nature of the rules. Moreover, it is hard to define a specific combination of technical measures that identify better trading rules and points, since stocks might be affected by different external factors. Thus, it is important to incorporate investors’ sentiments in forecasting operations, considering dynamically the varying stock behavior. This paper presents a sentiment aware stock forecasting model using a Log BiLinear (LBL) model for learning short term stock market sentiment patterns, and a Recurrent Neural Network (RNN) for learning long-term stock market sentiment patterns. The Sentiment Aware Stock Price Forecasting (SASPF) model achieves a much superior performance compared to standard deep learning based stock price forecasting models.

Publisher

Engineering, Technology & Applied Science Research

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of an NLP-Driven Chatbot and ML Algorithms for Career Counseling;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

2. Enhancing Video Content Accessibility Through YouTube Transcript Summarization;Lecture Notes in Networks and Systems;2024

3. Evaluation of Stock Closing Prices using Transformer Learning;Engineering, Technology & Applied Science Research;2023-10-13

4. Bitcoin Price Prediction using the Hybrid Convolutional Recurrent Model Architecture;Engineering, Technology & Applied Science Research;2023-10-13

5. Sentiment Classification based on Machine Learning Approaches in Amazon Product Reviews;Engineering, Technology & Applied Science Research;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3