Abstract
In the present work, squeeze flow techniques were used to investigate the influence of squeezing rates on the yield stress of mortars in fresh state. The tested samples were prepared under similar conditions of room temperature and atmospheric pressure. The fresh mortars were tested at three squeezing rates (20 and 200mm/s) 15 minutes after mixing. The results show that the material’s yield stress increases with the increasing of the squeeze velocity. This increase is evident at low tensile speeds and is not obvious at high tack velocity. Elongational viscosity values increased as a result of the gap reduction for all the tested samples. However, when the squeeze speed was high, the strain rate increased because of the high displacement rates, a significant reduction in the mortar’s elongational viscosity was observed compared with those obtained when the squeeze speed was low. Despite that this behavior is associated with fluid-solid phase separation, which occurs for low displacement rates, these viscosity values actually represent the behavior of the material in practical situations when submitted to different velocities. The increase in the displacement rate of one order of magnitude caused a reduction in the viscosity of one order of magnitude.
Publisher
Engineering, Technology & Applied Science Research
Reference15 articles.
1. P. F. G. Banfill, “Use of the ViscoCorder to study the rheology of fresh mortar,” Magazine of Concrete Research, vol. 42, no. 153, pp. 213–221, Dec. 1990.
2. R. G. Pileggi, “Novel tools for the study and development of refractory castables,” (in Portugese), Ph.D. dissertation, Federal University of Sao Carlos, Sao Carlos, Brazil, 2001.
3. B. Belahcene, A. Mansri, and A. Benmoussat, “Investigation on the Rheological Behavior of Multigrade Oil under the Effect of Organic and Inorganic Impurities,” Engineering, Technology & Applied Science Research, vol. 4, no. 6, pp. 711–713, Dec. 2014.
4. V. T. Phan, “Influence of re-dispersible powder on the properties of mortars,” Journal of Materials and Engineering Structures, vol. 1, no. 1, pp. 2–10, Jan. 2014.
5. F. A. Cardoso, V. M. John, and R. G. Pileggi, “Rheological behavior of mortars under different squeezing rates,” Cement and Concrete Research, vol. 39, no. 9, pp. 748–753, Sep. 2009.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献