Abstract
The microstrip patch antenna is used in various communication applications including cellular phones, satellites, missiles, and radars, due to its several attractive features such as small size and weight, low cost, and easy fabrication. The microstrip patch antenna consists of a top radiating patch, a bottom ground plane, and a dielectric substrate in between. The patch can have different shapes, the rectangular patch being the most commonly used. In practice, the microstrip antenna suffers from narrow bandwidth and low gain efficiency. This paper aims to enhance the bandwidth and efficiency of a rectangular-patch antenna using the High-Frequency Structure Simulator (HFSS). Initially different patch sizes and substrate materials are investigated and optimal antenna parameters are achieved. Then, the antenna performance is further enhanced by inserting single and double slot designs into the patch. Two cost-effective feeding methods are involved in the investigation. The antenna is designed to operate in the Super High Frequency (SHF) band.
Publisher
Engineering, Technology & Applied Science Research
Reference19 articles.
1. N. Singh, S. Kumar, B. K. Kanaujia, “A new trend to power up next-generation Internet of Things (IoT) devices:‘rectenna’”, in: Energy Conservation for IoT Devices, pp. 331–356, Springer, 2019
2. A. Joret, M. F. L. Abdullah, M. S. Sulong, “Simulation of GPR system design using CST microwave and Matlab”, Yanbu Journal of Engineering and Science, Vol. 14, pp. 49–57, 2017
3. V. P. Patil, “Enhancement of bandwidth of rectangular patch antenna using two square slots techniques”, International Journal of Engineering Sciences & Emerging Technologies, Vol. 3, No. 2, pp. 1–12, 2012
4. S. Chattopadhyay, M. Biswas, J. Y. Siddiqui, D. Guha, “CAD of mechanically tunable rectangular microstrip patch with variable aspect ratio”, IEEE Applied Electromagnetics Conference, Kolkata, India, December 19-20, 2007
5. S. R. Emadian, J. Ahmadi-Shokouh, “Very small dual band-notched rectangular slot antenna with enhanced impedance bandwidth”, IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, pp. 4529–4534, 2015
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献